Ví dụ áp dụng

Ví dụ 1: 

Rút gọn biểu thức: \(A = \frac{{{a^{ – n}} + {b^{ – n}}}}{{{a^{ – n}} – {b^{ – n}}}} – \frac{{{a^{ – n}} – {b^{ – n}}}}{{{a^{ – n}} + {b^{ – n}}}}\left( {ab \ne 0;a \ne \pm b} \right)\)

Lời giải:

\(A = \frac{{{a^{ – n}} + {b^{ – n}}}}{{{a^{ – n}} – {b^{ – n}}}} – \frac{{{a^{ – n}} – {b^{ – n}}}}{{{a^{ – n}} + {b^{ – n}}}} = \frac{{{a^n} + {b^n}}}{{{a^n}{b^n}\left( {\frac{{{b^n} – {a^n}}}{{{a^n}{b^n}}}} \right)}} – \frac{{{b^n} – {a^n}}}{{{a^n}{b^n}\left( {\frac{{{a^n} + {b^n}}}{{{a^n}{b^n}}}} \right)}}\)

\(= \frac{{{{\left( {{a^n} + {b^n}} \right)}^2} – {{\left( {{b^n} – {a^n}} \right)}^2}}}{{\left( {{a^n} + {b^n}} \right)\left( {{b^n} – {a^n}} \right)}} = \frac{{4{a^n}{b^n}}}{{{b^{2n}} – {a^{2n}}}}\)

Ví dụ 2: 

Cho a,b là các số thực dương .Rút gọn biểu thức sau:

a) \(\left( {1 – 2\sqrt {\frac{a}{b}} + \frac{b}{a}} \right):{\left( {{a^{\frac{1}{2}}} – {b^{\frac{1}{2}}}} \right)^2}\)

b) \(\frac{{{a^{\frac{1}{4}}} – {a^{\frac{9}{4}}}}}{{{a^{\frac{1}{4}}} – {a^{\frac{5}{4}}}}} – \frac{{{b^{ – \frac{1}{2}}} – {b^{\frac{3}{2}}}}}{{{b^{\frac{1}{2}}} + {b^{ – \frac{1}{2}}}}}\)

Lời giải:

a) \(\left( {1 – 2\sqrt {\frac{a}{b}} + \frac{b}{a}} \right):{\left( {{a^{\frac{1}{2}}} – {b^{\frac{1}{2}}}} \right)^2} = {\left( {1 – \sqrt {\frac{a}{b}} } \right)^2}:\left( {\sqrt a – \sqrt b } \right)\)

\(= \frac{{{{\left( {\sqrt b – \sqrt a } \right)}^2}}}{b}.\frac{1}{{{{\left( {\sqrt a – \sqrt b } \right)}^2}}} = \frac{1}{b}\)

b) \(\frac{{{a^{\frac{1}{4}}} – {a^{\frac{9}{4}}}}}{{{a^{\frac{1}{4}}} – {a^{\frac{5}{4}}}}} – \frac{{{b^{ – \frac{1}{2}}} – {b^{\frac{3}{2}}}}}{{{b^{\frac{1}{2}}} + {b^{ – \frac{1}{2}}}}} = \frac{{{a^{\frac{1}{4}}}\left( {1 – {a^2}} \right)}}{{{a^{\frac{1}{4}}}\left( {1 – a} \right)}} – \frac{{{b^{ – \frac{1}{2}}}\left( {1 – {b^2}} \right)}}{{{b^{ – \frac{1}{2}}}\left( {{b^2} – 1} \right)}} = 1 + a + 1 = a + 2\)

Ví dụ 3: 

Viết dưới dạng lũy thừa với số mũ hữu tỷ các biểu thức sau:

a) \(A = \sqrt[5]{{2\sqrt[3]{{2\sqrt 2 }}}}\)

b) \(B = \sqrt {a\sqrt {a\sqrt {a\sqrt a } } } :{a^{\frac{{11}}{{16}}}}\quad \left( {a > 0} \right)\)

Lời giải:

a) \(A = \sqrt[5]{{2\sqrt[3]{{2\sqrt 2 }}}} = \left\{ {{{\left[ {{{\left( {{2^{\frac{1}{2}}}.2} \right)}^{\frac{1}{3}}}.2} \right]}^{\frac{1}{5}}}} \right\}\)

\(= {\left[ {{{\left( {{2^{\frac{3}{2}}}} \right)}^{\frac{1}{3}}}.2} \right]^{\frac{1}{5}}} = {\left( {{2^{\frac{1}{2}}}.2} \right)^{\frac{1}{5}}} = {2^{\frac{3}{2}\frac{1}{5}}} = {2^{\frac{3}{{10}}}}\)

b) \(B = \sqrt {a\sqrt {a\sqrt {a\sqrt a } } } :{a^{\frac{{11}}{{16}}}} = {\left\{ {{{\left[ {{{\left( {{a^{\frac{3}{2}}}} \right)}^{\frac{1}{2}}}a} \right]}^{\frac{1}{2}}}.a} \right\}^{\frac{1}{2}}}:{a^{\frac{{11}}{{16}}}}\)

\(= {\left[ {{{\left( {{a^{\frac{3}{4} + 1}}} \right)}^{\frac{1}{2}}}.a} \right]^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} = {\left( {{a^{\frac{7}{8} + 1}}} \right)^{\frac{1}{2}}}:{a^{\frac{{11}}{{16}}}} = \frac{{{a^{\frac{{15}}{{16}}}}}}{{{a^{\frac{{11}}{{16}}}}}} = {a^{\frac{1}{4}}}\)

Ví dụ 4:

Cho a là số thực dương, đơn giản các biểu thức sau:

a) \({a^{\sqrt 2 }}.{\left( {\frac{1}{a}} \right)^{\sqrt 2 – 1}}\)

b) \(\frac{{{a^{2\sqrt 2 }} – {b^{2\sqrt 3 }}}}{{{{\left( {{a^{\sqrt 2 }} – {b^{\sqrt 3 }}} \right)}^2}}} + 1\)

Lời giải:

a) \({a^{\sqrt 2 }}.{\left( {\frac{1}{a}} \right)^{\sqrt 2 – 1}} = {a^{\sqrt 2 }}{\left( {{a^{ – 1}}} \right)^{\sqrt 2 – 1}} = {a^{\sqrt 2 }}{a^{1 – \sqrt 2 }} = a\)

b) \(\frac{{{a^{2\sqrt 2 }} – {b^{2\sqrt 3 }}}}{{{{\left( {{a^{\sqrt 2 }} – {b^{\sqrt 3 }}} \right)}^2}}} + 1 = \frac{{\left( {{a^{\sqrt 2 }} – {b^{\sqrt 3 }}} \right)\left( {{a^{\sqrt 2 }} + {b^{\sqrt 3 }}} \right)}}{{{{\left( {{a^{\sqrt 2 }} – {b^{\sqrt 3 }}} \right)}^2}}} + 1\)

\(= \frac{{{a^{\sqrt 2 }} + {b^{\sqrt 3 }} + {a^{\sqrt 2 }} – {b^{\sqrt 3 }}}}{{\left( {{a^{\sqrt 2 }} – {b^{\sqrt 3 }}} \right)}} = \frac{{2{a^{\sqrt 2 }}}}{{{a^{\sqrt 2 }} – {b^{\sqrt 3 }}}}\)

Ví dụ 5:

Không dùng máy tính bỏ túi, hãy so sánh các cặp số sau:

a) \(\sqrt[4]{{13}}\; \vee \;\sqrt[5]{{23}}\)

b) \({\left( {\frac{1}{3}} \right)^{\sqrt 3 }}\; \vee \;{\left( {\frac{1}{3}} \right)^{\sqrt 2 }}\)

Lời giải:

a) Ta có: \(\left\{ \begin{array}{l} \sqrt[4]{{13}} = \sqrt[{20}]{{{{13}^5}}} = \sqrt[{20}]{{371.293}}\\ \sqrt[5]{{23}} = \sqrt[{20}]{{{{23}^4}}} = \sqrt[{20}]{{279.841}} \end{array} \right. \Rightarrow \sqrt[4]{{13}} > \sqrt[5]{{23}}\)

b) Ta có: \(\sqrt 3 > \sqrt 2 \Rightarrow {\left( {\frac{1}{3}} \right)^{\sqrt 3 }} < {\left( {\frac{1}{3}} \right)^{\sqrt 2 }}\)